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Abstract

Design of a multihundred-watt Dynamic Isotope Power System (DIPS) based on the U.S. Department of Energy

(DOE) General Purpose Heat Source (GPHS) and small (muhihundred-watt) free-piston Stifling engine (FPSE)

technology is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The

design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging

from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a
kilowatt. Unlike previous DIPS designs which were based on turbomachinery conversion (e.g. Brayton), this small

Stifling DIPS can be advantageously scaled down to multihundred-watt unit size while preserving size and mass

competitiveness with RTGs. Preliminary characterization of units in the output power ranges 200-600 We indicate that
on an electrical watt basis the GPHS/small Stifling DIPS will be roughly equivalent to an advanced RTG in size and mass

but require less than a third of the isotope inventory.

INTRODUCTIO___

Within the context of today's civil space agenda there are about twenty missions where radioisotope power sources

will be required. These include all the deep space and outer planet missions presently in the Office of Space Science and

Applications (OSSA) strategic plan plus those proposed by the solar system exploration and space physics subcommittees
(Boain 1991), and the many robotic planetary surface missions considered as precursors to later human exploration (Petri

et al. 1990). Almost all the missions (summarized in Table 1) are unmanned. From the known mission characterizations

and the capabilities of vehicles and spacecraft involved, none of the unmanned missions will require more than 700 W.
Dates listed for the missions are only estimates; most of them will not take place for 10 years or more. Although there

is an eventual requirement for multi-kilowatt power to support manned missions (construction and operation of a lunar

base, for example), the manned missions are not anticipated to take place until most of the unmanned missions have been

completed. The unmanned missions are remote robotic missions, to locations ranging from the lunar surface to deep

space. High performance and minimum weight are desirable, but the key requirement is for reliable operation in a harsh

environment, without intervention, over extended periods of time.

RTG's

The only power source presently available to meet these requirements is the radioisotope thermoelectric generator

(RTG) developed for NASA by the Department of Energy (DOE). The RTG is built around the space-qualified General

Purpose Heat Source (GPHS), also furnished by DOE. The present day GPHS RTG is basically an array of radiatively

coupled thermoelectric (TE) cells enclosing a stack of GPHS blocks as shown in Figure 1. This power source is the result

of years of evolutionary development and flight experience. The GPHS RTG is next scheduled for service on the Cassini

mission, but it may be superceded for later missions (Solar Probe, Pluto flyby, Comet Nucleus Sample Return etc.) by

an advanced modular RTG design known as Mod RTG (Hartmann 1990), Mod RTG represents the next step in
evolutionary development from the present state-of-art GPHS RTG. RTG's have demonstrated outstanding reliability.

Their thermoelectric conversion system is made up of multiple series-parallel strings of redundant elements which
accommodate failure of any element in the stringwith only partial degradation. No open circuit failures have ever been

recorded. Counting all the RTG powered missions flown to date, over 70 years of successful flight experience have been



TABLE1. MissionsThatRequireRadioisotopePowerSources

Proposed Mission
Launch Date Duration

NASA Space Science Missions

Cassini

Solar Probe

Solar Systcm Exploration Missions

Pluto Flyby

Neptune Orbiter

Mars Rovcr Samplc Return
Solar Probe

Uranus Orbiter

Comet Nucleus Sample Return

Space Physics Missions

Interstellar Probe

Polar Hciiospheric Probe

Space Exploration Initiative (SEI) --
Precursor Missions

Lunar Site Rover (2 mission)

Mars Environment Survey (MESUR)

Lunar Surface Telescope Package

Lunar Comm. Network (4 missions)

Mars Rover Sample Rcturn

Mars Site Survey Rover

Manned Missions

Unpressurized Lunar Rover
Pressurized Lunar Rover

Lunar Excursion Vehicle Servicer

Estimated

End of Mission

Power Level

1998 10.5 yrs. 480W

post 2000 8 yrs. 500W

1998 14-16 yrs. 700W

2002 20 yrs. 30W

2001 4 yrs. 500W

2001 8 y_. 337W

2007-11 14-16 yrs. 700W

2007-11 8 yrs. 500W

circa 2010 20-25 yrs. 200-500W
post 2010 35 yrs. 200-500W

1997 1-2 yrs. 100-300W

1998 5 yrs. 15W

1998 5 y_. 200-500W

1998 and 1999 >10yrs. 100W

post2000 4 y_. 500W

post 2000 5 yrs. 400W

post 2000 960 hrs. 2-5 kW

post2000 96 hrs. 12 kW

post 2000 1 yr. 10 kW

accumulatcd (Skrabck 1990). However, their thermal to electric conversion system is not very efficient (typically

6 to 7 percent). As a result, a significant cost penalty must be paid, since the low emission and long half-life plutonium

isotope uscd in the GPHS, originally available as a byproduct from nuclear weapons production, is very expensive to

produce and remaining stocks are limited. No production capability presently exists. The price paid by the government
for new supplies of this material will range from $1200/gm PuO2, as quoted for this material by the Commonwealth of

lndependcnt States (CIS) for sale from their existing stock (DOE Correspondence 1991), to over $8000/gm PuO2 if new
domestic production wcrc initiated (Prospcctor I1Workshop 1992). Each GPHS is loaded with 448 gm of active PuO2.

Counting the costs of production, encapsulation and assembly into heat source modules, the resulting mission user cost
is estimated to be between $6000 and $18,000 per thermal watt. For an RTG, this translates to roughly $100,000 to
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Rgure 1 .---General-purpose heat source - RTG.

$300,000 per electrical watt. The radioisotope inventory carried by RTGs (463 Ci per electrical watt) also translates

to significant safety concerns (Englehart 1984, and Bennett 1987). To a first approximation, the numerically calculated

risk versus on-board inventory is a linear relationship (i.e. the more isotope carried, the greater the risk). These risks have

been considered acceptable for the radioisotope powered missions carried out to date but the desire to reduce or eliminate

that risk has long been recognized (Aftergood 1988).

D_'nami¢ Isotope Power Systems (DIPS)

Where no alternatives to isotope power are available there is a strong incentive to reduce the amount of isotope that

is required. This can be accomplished by developing a power source with more efficient conversion. At present, the most

efficient converters of thermal energy are dynamic heat engines. When energized by an isotope heat source, the resulting

power plant is known as a dynamic isotope power system, or DIPS. A DIPS requires less isotope per delivered electrical

watt because heat engines are 3 to 5 times more efficient than thermoelectric converters. DIPS development for space,

historically aimed at multi-kWe missions that were anticipated for the post-Apollo era, focused on turbomachinery-based

heat engine converters, primarily the closed Brayton cycle. Turbomachinery is mechanically simple, with potentially

high reliability, and scales advantageously to higher power levels. For multi-kWe missions, a turbomacbinery based

DIPS is significantly lower in mass than the equivalent amount of RTG's. However, the turbomachinery based DIPS

is not an effective competitor with RTG's for multihundred-watt missions. The fundamental reason for this is that

turbomachinery does not scale well to lower power levels due to fixed losses such as bearing loss, windage, turbine tip

clearance, etc (Johnson and Stadnik 1990). Generally speaking, turboalternator unit sizes below 500 W are considered

impractical because of scaling cffects on overall converter efficiency.

Small Stirling DIPS

The Stirling engine, particularly the more recently developed free-piston Stirling engine (FPSE) combined with a

linear alternator (LA), is the better converter choice for multihundred-watt missions. As Figure 2 illustrates, the

FPSE/LA is quite different from the kinematic machinery developed under earlier isotope Stirling programs (Lehrfeld

and Richards 1980). It is mechanically simple, typically with only two moving parts, and it is hermetically sealed.

Suspended on linear gas bearings or flexures, its moving parts do not contact. The Stirling engine's vibrations (moving

parts reciprocate at 60 to 100 Hz) are essentially single frequency and can be easily attenuated or tuned out. Although

its invention is relatively recent (1962), the FPSE has been developed and used for a wide variety of applications



accumulatingaconsiderablebackgroundoftestandoperationalexperienceatpowerlevelsrangingfrom5Wto2kW
(RossandDudenhoeffer1991).Runinreverseascryocoolersforsurveillancesensors,freepistonStirlingmachineshave
alreadyseenoperationaluseinspace.Thisexperienceindicatespotentialtoachieve,asanisotopeengine,thehigh
reliabilitythatisrequiredfordecadesofunattendedremoteoperation.Thisisofparamountimportance,sincetheFPSE/
LAmustinevitablybecomparedtoRTGthermoelcctricconverterswhichhaveaccumulatedyearsofflightexperience.

Unliketurbomachinery,anFPSEcanbeadvantageouslyscaledfrommulti-kilowattunitsizetohundred-wattunitsize
andbelow.PublishedperformancedatafromvariousFPSEunitspreviouslybuiltandtested,plottedinFigure3,
demonstrateconsistentperformanceoverarangeofunitsizesaslargeasthe10pluskilowattNASASPRE(Cairelliand
Geng1988),tothekilowattclassSunpowerSHARPengine(Lane1989),theMT1TechnologyDemonstrator(Bergren
andMoynihan1983),theNASARE-1000(Schreiber,GengandLorenz1986)andSPIKEengincs(Berchowitz1983),
tohundredwattclassunitssuchastheSunpowerS-100(Bcrchowitz1983),downtoassmallasthe5Wunitsdeveloped
topoweranartificialheart(White1982).Thedataisconsistentoverarangeroughlyfoulordersof magnitude.
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Figure 4.---SmaJl free piston Stirling DIPS; direct integration,

heat source to heater head.

The other attractive feature of the FPSE is its ease of thermal integration with GPHS at multihundred-watt unit size.

Approximately 250 thermal watts each, the GPHS modules are designed for radiative coupling to a conversion system.

For a multihundred-watt Stifling DIPS unit, the FPSE heater head can be heated directly by clustering the blocks around

it as shown in Figure 4, eliminating the need for a separate heat source assembly (HSA) and intermediate heat transfer

loop. Previous work (Bents 1991, McComas and Dugan 1991) has shown the feasibility of direct integration. In thcse

studies, which investigated the potential of combining small free-piston Stifling engines with isotope heat sources using

radiative coupling, various configurations of GPHS and insulation packages surrounding an opposed pair of FPSE heater

heads were considered. Thermal modeling was then performed to simulate the GPHS heat source and its integration into

various heat source/heater head geometries, using the analysis codes TRAYSYS and SINDA. The analysis showed that

heater head operating temperatures of 1000-1050K can be maintained while keeping the GPHS fuel clad temperatures

within acceptable limits (less than 1600K to inhibit grain growth). Since each individual block GPHS block must have

an unobstructed view of the heater head, geometric considerations limit the largest size unit that can be integrated in this

fashion to about 600 We. However, significant mass savings is achievable for these smaller units.

Development of the direct integration concept, as shown in Figure 4, leads to the small Stirling DIPS configuration

shown in Figure 5. Again the GPHS clust_s radiatively coupled to the FPSE heater head thus avoiding heavy



intermediateheatexchangeandtransportcomponents(insulatedducts,heatpipes,pumpedloopsetc.).Cylindricalin
form,thissmallDIPSintegratestheHSA,convertersanddownstreamcomponentsinsideacylindricalheatpiperadiator
whichservesastheunit'smountingstructureandouterenvelope(theunitisattachedtothespacecraftviacompliant
mounts).Tworedundantconvertersareused;thatis,intheeventthatone converter fails, the remaining convcrter absorbs

the entire HSA heat load. These converters, which individually employ dual opposed power pistons for minimum

vibration, mount into opposite ends of the HSA facing each other to further cancel vibration forces.

More detail can be seen in Figure 5(a) which shows general flow paths for heat from the GPHS cluster into the FPSE

hot end, and waste heat from the converter cold end back out to the radiator. The HSA outer shell contains an imbedded

network of heat pipes. These heat pipes couple the radiator drum segments (attached to its exterior circumference via

an equalizer network) to the converter mounting sleeve (conductively couples to the FPSE cold end). The equalizer

ensures that both halves of the cylinder radiate waste heat regardless of whether one or both engines are working.

Characterizations of the small Stirling DIPS concept shown in Figure 5, which include heat source assemblies,

insulation packages, converters and downstream components, are presented in Table 2. Six point designs (unit sizes from

200 We to 600 We) are summarized. These designs were performed to robotic deep space platform requirements

furnished by the Jet Propulsion Laboratory. Of the two 200 We designs, one is mass-optimized, and the other minimizes

isotope useage. Performance is calcul_lted for ! 2 years after beginning of life (BOL). Total DIPS unit mass and number

of GPHS blocks used are also plotted in Figure 6 for comparison with estimates for state of art (GPHS) and advanced

(Mod) RTG units based on published specific mass data (Hartmann 1990) shown at the bottom of Table 2. Shaded areas

are bounded by BOL and 12 year performances. The characterizations indicate that a small Stirling DIPS will have

physical dimensions and mass similar to Mod RTG, with specific powers ranging from 5.43 to 8.71 We/kg. But the

isotope consumption, as evidenced by the number of GPHS modules required to produce equivalent electrical power,

is only 20 to 30 percent of the RTG requirement.

• Small free piston Stirling engine/linear alternator
• DOE General Purpose Heat Source (GPHS)
• Direct heat source/heater head integration
• Dual redundant power Conversion unit
• Not shown: power conditioning and controls

(Assembled unit
is cylinder)

Radiator shell -_ F HSA outer shell

Equalizer --,_ _._Section AA [ _ Insulation package

GPHC; block

FPSE heater head

I D ]
_ Heat source _ Section _

converters assembly (HSA)

Figure 5.---Small Stiding DiPS unit configuration; cutaway view.



TABLE 2. Small Stifling DIPS, with Comparison to GPHS RTG and Mod RTG

Performance/Envelope Specification

Output power, We a
Number GPHS blocks used

Envelope (cylinder)

outer diameter, cm

length, cm

Heat Source Assembly (HSA) mass breakdown, kg
GPHS blocks

Insulation package
Container with mounts

Conversion and Heat Rejection mass breakdown, kg
Dual FPSE/LA converters

Radiator h

Power conditioning
Structure

Total Mass, kilograms

Specific Power, We/kg a

RTG data (from Hartmann 1990)

Performance/Envelope Specification

Output power, BOL We

estimated 12 years after BOL
Number GPHS blocks used

Envelope (cylinder with fins)
outer diameter, cm

length, cm

Mass, kg
Specific Power, BOL We/kg

Specific Power 12 years after BOL, We/kg

200 200 300 400 500 600

3 4 5 7 9 10

25.6 29 32 37 40 40

465 42 160 192 137 347

4.36 5.82 7.27 10.2 13.09 14.55

2.63 3.17 3.71 4.81 5.21 4.9

3.69 2.52 3.93 3.95 6.34 6.51

6.15 6.15 8.86 12.32 13.54 15.51

7.5 0.76 3.23 4.47 3.5 8.77

10.02 10.02 11.28 12.32 13.22 14.03

3.43 2.84 3.83 4.71 5.5 6.43

37.77 31.28 42.12 51.76 60.37 70.7

5.43 6.56 7.3 7.92 8.49 8.71

GPHS-RTG Mod-RTG

285 340

220 262

18 18

42.2 33

114 108
56.1 42.2

5.08 7.9

3.92 6.1

aSpecified 12 years after BOL.
h262 K maximum sink temperature.
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Comparison of unit mass and isotope requirement

with RTG's.

CONCLUSION

For the forseeable future, the most likely missions for radioisotope power sources are long duration robotic missions

at power levels in the multihundred-watt range. RTG's are normally considered for these missions but they require large

amounts of isotope heat source which is hard to obtain, hazardous, and expensive. Because a dynamic system requires

significantly less isotope to produce power, it could reduce the costs, and possibly the risks, to the mission. It has to be

sufficiently small, light, and reliable, however, in order to replace the RTG.

It is possible to build a muhihundred-watt DIPS by combining GPHS with the free-piston space Stifling engine

technology now being developed. The FPSE/LA, which can be built as a practical converter in the hundred-watt unit

size, is directly integrated with the GPHS heat source through radiative coupling to the FPSE heater head, thus avoiding

intermediate heat transfer devices, and minimizing system mass. Thermal analysis has shown the'small Stirling DIPS

concept to be feasible, and preliminary system characterizations show it to be attractive. On a per electrical watt basis

it is equivalent in size and weight to the RTG, but requires less than one third the radioisotope. If long term reliability
of the small free-piston Stirling space engine can be demonstrated, small Stifling DIPS can provide a low cost alternative
to RTG's for these missions.

The paper discusses work performed by the authors within NASA Lewis' Power Technology Division as supported

by OAST (Code R). Further acknowledgment is extended to outside organizations who contributed supporting data and
requirements, including the Jet Propulsion Laboratory Power Systems Section, E.G.+G. Mound Laboratory, General

Elcctric Astro Space Company, North American Rockwell Rocketdyne Division and the Allied Signal Company.
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